Structural Vibration Suppression Using a Reduced-Order Extended State Observer-Based Nonsingular Terminal Sliding Mode Controller with an Inertial Actuator

نویسندگان

چکیده

In this paper, we mainly aimed to design a reduced-order extended state observer-based active vibration controller for structural control system with total disturbances, i.e., model uncertainties, higher harmonics, and external excitations. A observer (RESO)-based nonsingular terminal sliding mode (RESO–NTSMVC) method is proposed the suppression of an all-clamped plate structure inertial actuator. First, second-order space thin plate, actuator, was established by solving dynamic partial differential equation analyzing physical model. Second, excitations, were estimated compensated using RESO via feedforward part. Third, NTSMVC based on value designed obtain fast-tracking rate effective performance. addition, stability closed-loop proven Lyapunov criterion. Finally, semi-physical experimental instrument built MATLAB/Simulink real-time environment NI-PCIE6343 acquisition card verify strong anti-disturbance performance method. The comparison results showed that amplitudes could be reduced 11.7 dB, when traditional (ESO–NTSMVC) achieved effect only 6.5 dB. comparative possessed better

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems

This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...

متن کامل

Robust Controller Design Based on Sliding Mode Observer in The Presence of Uncertainties and Actuator Saturation

This paper studies the design of a robust output feedback controller subject to actuator saturation. For this purpose, a robust high-gain sliding mode observer is used to estimate the state variables. Moreover, the combination of Composite Nonlinear Feedback (CNF) and Integral Sliding Mode (ISM) controllers are used for robust output tracking. This controller consists of two parts, the CNF part...

متن کامل

Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator

Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator Hao Li a b , Lihua Dou a b & Zhong Su c a School of Automation, Beijing Institute of Technology, Beijing 100081, China b Key Laboratory of Complex System Intelligent Control and Decision (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China c Key Laboratory of Modern Measurement and ...

متن کامل

Sliding Mode Control for Diesel Engine Using Extended State Observer

This paper does a research on turbocharged diesel engines both of air-path or speed-path alone, and proposes a cooperative control strategy of air and speed-path two loop TDE system. For modern diesel engines, accurate air/fuel ratio (AFR) and exhaust gas recirculation (EGR) rates design are very important to meet the requirements of emission standards of NOx and PM. For the EGR and AFR rates a...

متن کامل

Active Vibration Suppression of a Nonlinear Flexible Spacecraft

In this article, the issue of attitude control and active vibration suppression of a nonlinear flexible spacecraft is assessed through piezoelectric patches as actuator and sensors. Two controller loops are applied: the inner loop, to make the panel vibration damped through piezoelectric patches; and the outer loop, to perform spacecraft maneuver using the reaction wheel acting on the hub. An o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2022

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines11010001